18v^2+120v+75=0

Simple and best practice solution for 18v^2+120v+75=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18v^2+120v+75=0 equation:


Simplifying
18v2 + 120v + 75 = 0

Reorder the terms:
75 + 120v + 18v2 = 0

Solving
75 + 120v + 18v2 = 0

Solving for variable 'v'.

Factor out the Greatest Common Factor (GCF), '3'.
3(25 + 40v + 6v2) = 0

Ignore the factor 3.

Subproblem 1

Set the factor '(25 + 40v + 6v2)' equal to zero and attempt to solve: Simplifying 25 + 40v + 6v2 = 0 Solving 25 + 40v + 6v2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 4.166666667 + 6.666666667v + v2 = 0 Move the constant term to the right: Add '-4.166666667' to each side of the equation. 4.166666667 + 6.666666667v + -4.166666667 + v2 = 0 + -4.166666667 Reorder the terms: 4.166666667 + -4.166666667 + 6.666666667v + v2 = 0 + -4.166666667 Combine like terms: 4.166666667 + -4.166666667 = 0.000000000 0.000000000 + 6.666666667v + v2 = 0 + -4.166666667 6.666666667v + v2 = 0 + -4.166666667 Combine like terms: 0 + -4.166666667 = -4.166666667 6.666666667v + v2 = -4.166666667 The v term is 6.666666667v. Take half its coefficient (3.333333334). Square it (11.11111112) and add it to both sides. Add '11.11111112' to each side of the equation. 6.666666667v + 11.11111112 + v2 = -4.166666667 + 11.11111112 Reorder the terms: 11.11111112 + 6.666666667v + v2 = -4.166666667 + 11.11111112 Combine like terms: -4.166666667 + 11.11111112 = 6.944444453 11.11111112 + 6.666666667v + v2 = 6.944444453 Factor a perfect square on the left side: (v + 3.333333334)(v + 3.333333334) = 6.944444453 Calculate the square root of the right side: 2.635231385 Break this problem into two subproblems by setting (v + 3.333333334) equal to 2.635231385 and -2.635231385.

Subproblem 1

v + 3.333333334 = 2.635231385 Simplifying v + 3.333333334 = 2.635231385 Reorder the terms: 3.333333334 + v = 2.635231385 Solving 3.333333334 + v = 2.635231385 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + v = 2.635231385 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + v = 2.635231385 + -3.333333334 v = 2.635231385 + -3.333333334 Combine like terms: 2.635231385 + -3.333333334 = -0.698101949 v = -0.698101949 Simplifying v = -0.698101949

Subproblem 2

v + 3.333333334 = -2.635231385 Simplifying v + 3.333333334 = -2.635231385 Reorder the terms: 3.333333334 + v = -2.635231385 Solving 3.333333334 + v = -2.635231385 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-3.333333334' to each side of the equation. 3.333333334 + -3.333333334 + v = -2.635231385 + -3.333333334 Combine like terms: 3.333333334 + -3.333333334 = 0.000000000 0.000000000 + v = -2.635231385 + -3.333333334 v = -2.635231385 + -3.333333334 Combine like terms: -2.635231385 + -3.333333334 = -5.968564719 v = -5.968564719 Simplifying v = -5.968564719

Solution

The solution to the problem is based on the solutions from the subproblems. v = {-0.698101949, -5.968564719}

Solution

v = {-0.698101949, -5.968564719}

See similar equations:

| 2-3(2y-1)=17 | | 6+12p-4=6p+22-4p | | 0.8x+1.4= | | -2/5x-5/3/5x+7 | | 3(10+2j)= | | 12x+1=-46 | | w=6(-3) | | 15-1,2b=-3 | | 11x+35=180 | | m-8=1+4m | | 5/6*24 | | 7x-4=104 | | -57=-12+32r | | 612=c^2 | | z=19+3 | | y^2+4y-16=0 | | -9+v/9=-8 | | 9x=9x | | -52-3u=80 | | 2(7g+7)= | | 7x^2+24x-22=8-5x | | (2y^2+2y-12)/(y^2-5y+6) | | 2x/7=16/8 | | 3=-16t^2+38.8t+3 | | (x*x)-x-1=0 | | 2y+2.5=10 | | -75x^2=-48 | | x^2-10=40 | | -29+n=13 | | 7b=-2b+24 | | 6x*x+25x-32=0 | | -3/4x=21 |

Equations solver categories